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Abstract

The moment method has recently been used to infer stress in sigma space from fault/slip data. However, if these data are distributed along a

hyperplane having a smaller dimension than that of the space minus one, due to limited fault/slip population or biased sampling of it, the best

solution of stress vector is not in most cases, as expected, the eigenvector of the datum matrix relating to the smallest eigenvalue. The solution lies

within the subspace composed of the eigenvectors relating to the small eigenvalues, for which some auxiliary constraints need to be included.

Shear sense constraint alone is adopted, and incorporated by way of grid search, which gives rise to a range of accepted stress vectors in the

subspace. Examples from the Chelungpu fault, Taiwan, illustrate the feasibility of the proposed scheme.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Although stress inversion appears nonlinear in character,

Fry (1999) transformed fault/slip data into datum vectors in

‘sigma space’ where they tend to be distributed in or near a

hyperplane if they were produced in a single tectonic phase. In

contrast to some conventional nonlinear schemes (e.g.

Angelier, 1984; Xu, 2004), this justifies a new, for the most

part linear, scheme for inversion of stress. For single-phase (or

homogeneous) data, there is an analytical solution for the

‘stress vector’ directed normal to the hyperplane. It is the

eigenvector corresponding to the fifth largest eigenvalue of the

data matrix. (This is the smallest in the 5D space of Shan et al.

(2003), but the second smallest of Fry (1999) because he

retained the irresolvable (isotropic stress) sigma axis.) This is

known as the moment method, as the eigenvector is that of the

second moment (or Scheidegger) tensor, composed of second

moments—the moments and products of inertia—of the data

set. Eigenvector polarity is not constrained in the determi-

nation. So, for any solution, its negative is equally valid.
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Completion of the stress inversion, by discriminating

between polarities, requires knowledge of observed fault slip

senses, which are not taken into account within the moment

method.

It is generally implicit in this scheme that the estimated

stress vector should be the unique parameter that best describes

the planar distribution of datum vectors in sigma space.

Uniqueness requires full dimensionality of the hyperplane of

datum vectors of the four dimensions, after conventional

‘reduction’ to remove indeterminacies (Fry, 1999). Lower

dimensionality increases the degrees of freedom of the solution

(Fry, 1999).

While recently applying the scheme to real data sets of

probably a single phase, we found that this implicit condition is

often not fulfilled. Some of them will be discussed below. In

these real cases, the hyperplane has smaller dimensionality. So,

the stress vector associated with the smallest eigenvector,

rather than being a unique solution, is one member of a range of

solutions represented by a plane or volume in sigma space. Fry

(1999) introduced an unrelated geometric space—‘q-space’—

in which the distribution of the data through this range could be

considered in combination with known shear senses. The aim

of this communication is to develop a practical alternative

modification, in which treatment of shear sense is integrated

into sigma space, rather than subsequent to it.
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Fig. 1. Equal-area, lower hemispheric projection of fault/slip data measured at segments D (a) and C (b) of the Chelungpu fault, respectively. Fault data (Lee et al.,

2002) were provided by Blenkinsop (in press). Unfilled squares, circles and triangles represent the maximum, the intermediate and the minimum principal axes,

respectively. They represent the stress tensor restored from the geometric mean values of accepted stress vectors.
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2. An example showing the failure of the simple moment

method

To show the phenomenon described above, an example is

taken from Lee et al. (2003), as modified by Blenkinsop

(2006). It consists of 18 fault/slip data (Fig. 1a) from segment

D of the active Chelungpu fault, western Taiwan. (See

Blenkinsop (in press) for descriptive summary, context and

comparative analyses.) These surface rupture data had been

produced during the 1999 Chi-Chi earthquake along the

Chelungpu fault (Lee et al., 2002, 2003; Angelier et al., 2003).

All slip senses were reverse and generally plunging towards

the east (Fig. 1). Application of the moment method (Fry,

1999; Shan et al., 2004) to the data set gives rise to results

listed in Tables 1 and 2.

In Table 1, all the eigenvectors of the datum matrix are

listed in descending order of eigenvalue. The eigenvector

relating to the smallest eigenvalue, symbolised as v5, represents

the best solution of stress vector. However, neither the positive

vector nor its negative (Kv5) accords with all observed slip

senses (Table 2); only 38 and 61% satisfy the real senses of the

fault data, respectively. Of their corresponding stress tensors,

the maximum principal direction is 175.938 in the former and

76.078 in the latter. They are approximately perpendicular to
Table 1

Eigenvalues and corresponding eigenvectors (vi, iZ1, 2,.,5) of the data matrix

geometric mean vector (v) according to the method in this paper, being a compr

vZ0.146v5C0.899v4C0.412v3. See the text for more explanation

No. Eigenvalues Eigenvectors

Symbols s11 s

1 12.8616 v1 0.093

2 3.6694 v2 K0.221

3 0.8632 v3 0.388

4 0.5538 v4 0.864

5 0.0516 v5 0.215 K

6 v 0.968
each other. The possibility of two such diverse phases in the

data set is not supported by the fact that these data were

produced along a single reactivation of the fault during the

1999 Chi-Chi earthquake (Lee et al., 2002). Meanwhile,

although measurement errors surely exist, it is very difficult or

even impossible for them, in the light of their stochastic nature,

to produce the two phases having nearly perpendicular

maximum principal directions.
3. Reason for the failure

In seeking a unique solution by the moment method, it is

implicitly assumed that the eigenvector of the data matrix

relating to the smallest eigenvalue is a unique parameter that

describes the hyperplane. This assumption does not hold in

cases that, when eigenvalues are taken in decreasing order, give

an abrupt reduction to low eigenvalue after less than four of

them. In such a case, the hyperplane of data is effectively

reduced in dimensions from 4 to 3, 2 or even 1. A mundane

reason for such a reduction can be biased sampling of fault data

at outcrop. For example, repetitious sampling of a single fault

set would make fault data vectors cluster in sigma space,

probably reducing the dimension of the hyperplane to 1. A

more serious concern is that such a reduction can be an inherent
for the example from segment D of the Chelungpu fault. The last row is the

omise linear combination of three selected eigenvectors with coefficients as,

22 s12 s13 s23

0.159 K0.696 0.068 0.691

0.638 K0.097 0.676 K0.281

0.471 0.631 K0.029 0.478

0.080 K0.277 K0.004 K0.414

0.583 0.177 0.733 0.211

0.181 0.037 0.091 K0.144



Table 2

For the example from segment D of the Chelungpu fault, principal stress directions and stress ratios for the eigenvectors relating to the three smallest eigenvalues and

for the geometric mean stress vectors. For comparison, Celerier’s (personal communication, 2005) result by running his FAS software (Celerier, 1999) was also

listed in the second last row. For comparison, stress inversion from focal mechanisms in the region by Kao and Angelier (2001) is also shown at the last row. Fit

percentage is the percent of the observed slip senses similar to the calculated ones under the estimated stress. Stress ratio is defined as (s2Ks3)/(s1Ks3), where s1,

s2 and s3 are the maximum, the intermediate and the minimum principal stresses, respectively. Compressional stress is positive while tensional stress is negative.

No. Vectors Fit percentage

(%)

Principal directions (8) Stress ratio

s1 s2 s3

Bearing Plunge Bearing Plunge Bearing Plunge

3 v3 88 40.50 9.88 306.61 21.26 153.93 66.35 0.55

Kv3 12 153.93 66.35 306.61 21.26 40.50 9.88 0.45

4 v4 100 109.26 3.98 200.70 19.82 8.39 69.75 0.40

5 v5 38 175.93 9.02 273.97 41.40 76.07 47.18 0.11

Kv5 61 76.07 47.18 273.97 41.40 175.93 9.02 0.89

6 v 100 87.77 2.31 178.03 6.26 337.64 83.32 0.36

7 Celerier’s

result

97.25 12.84 189.71 10.68 318.31 73.18 0.62

8 Kao and

Angelier’s

(2001) result

295 4 28 35 199 54 0.29
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aspect of the fault population being sampled. In the case of

reactivated faults, there may be insufficient range of pre-

existing fault orientations. Or the orientations that reactivate

may be severely restricted by frictional limitations on slip. The

limiting case to such restrictions corresponds to that of

previously unfractured rock, for which a poorly 2D hyperplane

(plane) contains the two clusters from conjugate fault sets.

Away from these severely limited cases, the dimensional extent

of a data set in sigma space cannot generally be judged from the

raw data or from stereographic representations of their real

space orientations.

For the given example, we look at the eigenvalues of the

data matrix (Table 1), as they reflect the distribution of datum

vectors in sigma space. With respect to the two largest

eigenvalues, 12.8616 and 3.6694, the three other eigenvalues,

0.8632, 0.5538 and 0.0516, are very small. This indicates that

the datum vectors have a strong tendency of being distributed

close to a 2D plane, within which there is also a tendency to

alignment along the eigenvector relating to the largest

eigenvalue. The lack of constraint on stress by these data,

manifested in loss of hyperplane dimensionality, is sufficiently

stark as to be evident as lack of variation in orientations in real

space (Fig. 1a). The hyperplane, towards which datum vectors

are distributed, is reduced from 4 to 2 dimensions. Conse-

quently, the reduced hyperplane leaves two residual degrees of

freedom for the stress solution. This lies within the range

represented geometrically in sigma space by the residual

volume corresponding to combinations of the eigenvectors

relating to the first, the second and the third smallest

eigenvalues.

Furthermore, within the residual volume, in this circum-

stance, small fluctuations inherent in empirical data, due to

measurement errors or slight departure from the assumption of

constant stress state for the whole data set, may lead to a large

discrepancy between the optimum stress vector and
the eigenvector relating to the smallest eigenvalue. Therefore,

in such cases of an ill-defined best stress vector, it is not

improbable that the stress tensor constructed from the

eigenvector relating to the smallest eigenvalue will be

meaningless. Shear sense then becomes an indispensable

element of the stress determination.
4. Modification of the moment method

As stated above, a number greater than one, k let us say, of

eigenvectors having small value, is needed to describe the

range of normals to the hyperplane of datum vectors in the

sigma space. By definition, the best solution (v) of stress vector
lies in the subspace defined by these eigenvectors (vi, iZ5K
kC1, 5KkC2,.,5) of the sigma space and is a linear

combination of them:

vZ
X5

iZ5KkC1

aivi (1)

where ai are the unknown coefficients. Only in the simple case

of kZ1 does aiZ1 and vZv5, otherwise, ai are unknown.

In order to solve for these unknown coefficients some

auxiliary constraint(s) must be included. A minimum condition

to be incorporated is that a single phase should account for all,

or at least as many as possible, observed slip senses. This is

complicated by virtue of the nonlinear character of the

constraint. For the sake of simplicity, we use in this paper a

grid-searching method that discretises the subspace into a

series of densely spaced nodes and accepts as stress vector the

node best satisfying the constraint.

The method is simple in theory and easy to program,

compared with sophisticated optimization algorithms that may

be used for the task but are beyond the scope of this paper.
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Fig. 2. The distribution of the proportion of data at segment D that fit the node conditions, in evenly 108 spaced azimuths and plunges. The grey dot in the left side,

with an azimuth of 80.88 and a plunge of 24.38, represents the solution of geometric mean stress vector when using the constraint. See the text for definitions of the

azimuth and plunge and explanation.
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Also beyond the scope of this paper are additional constraints

such as friction.
5. Test

Two examples are taken to show the feasibility of the grid

search proposed above. They have 2D and 3D reduced

hyperplanes, respectively, toward which datum vectors are

distributed in the sigma space.
5.1. Example with a 2D reduced hyperplane

For the above example, we take the 3D section through

sigma space containing the eigenvectors relating to the three

smallest eigenvalues (Table 1). We represent this subspace

with v5, v4 and v3 directed eastwards, northwards and upwards,

respectively, and consider directions from the centre as

intersection points on a unit sphere centred at the origin. For

grid definition, we describe any point on the sphere by its

azimuth and plunge. The azimuth starts from the eastern

direction and increases anticlockwise. The ranges of the

azimuth (from 0 to 3608) and of the plunge (from K90 to

908) are each evenly spaced every 108. A smaller spacing

would lead to a higher precision of stress vector, but takes a

longer time. Note that this is not an equal density mesh; as grid

points are closer at high absolute values of plunge, the

azimuthal resolution will be greater the higher the absolute

plunge. However, this does not invalidate the method and

the prescribed spacing is sufficient to illustrate our example, the

results of which are shown in Figs. 1–3, and listed in Tables 1

and 2.
In the central left side of Fig. 2, the fit proportion reaches 1.0

within an approximately elliptical range. This means that all

observed slip senses are consistent with a solution of stress

vector, provided it lies in this range. Without further

constraints, we cannot theoretically exclude any stress vector

within the range. It should, nevertheless, be noted that nodes at

the margin of this field will have at least one datum for which

the resolved shear stress is close to switching sense, which

implies that it is minimal in value and that slip on the fault

concerned would be highly unlikely to occur. So, the true stress

solution is likely to be represented well inside this field, not by

a node at its margin.

Fig. 3a shows stress tensors that were converted from these

accepted vectors. Both the maximum and the minimum

principal directions are restricted to patches around E–W and

upwards, respectively. The former has a wider distribution than

the latter, indicating tighter constraint on the latter. Meanwhile,

the intermediate principal directions are restricted to an

incomplete great circle.

As an example of a selection of a unique stress state from

within this range, a geometric mean vector (Table 1 and

Fig. 1a) has been calculated from all the accepted stress vectors

in the range. (There is no theoretical preference for geometric

mean. If there were, it would become important to use an

evenly spaced grid. We simply choose the same well-known,

transparent and identical specification, for each example in this

paper, for achieving a reasonably representative central value.)

Its converted stress tensor (Fig. 1 and Table 2) has a maximum

principal stress of azimuth 87.778. The direction is quite well in

accordance with the assumed regional E–W compression (Kao

and Angelier, 2001) (Table 2) and also is similar to that



Table 3

Eigenvalues and corresponding eigenvectors (vi, iZ1, 2,.,5) of the data matrix for the example from segment C of the Chelungpu fault. In the last row, the

geometric mean stress vector (v) is a compromise linear combination of two selected eigenvectors with coefficients as vZ0.1740v5C0.985v4

No Eigenvalues Eigenvectors

Symbols s11 s22 s12 s13 s23

1 14.0142 v1 K0.014 K0.279 K0.521 K0.154 0.792

2 5.8789 v2 K0.283 0.666 K0.095 0.621 0.288

3 3.1538 v3 0.320 0.073 0.778 K0.060 0.532

4 0.8743 v4 0.820 0.441 K0.337 K0.117 K0.074

5 0.0787 v5 0.381 K0.528 K0.018 0.757 K0.044

6 v 0.874 0.343 K0.335 0.017 0.081

N N
(a) (b)

Fig. 3. Equal-area, lower hemispheric projection of accepted stress tensors inferred from fault/slip data from segments D (a) and C (b) of the Chelungpu fault,

respectively. Unfilled squares, circles and triangles represent the maximum, the intermediate and the minimum principal axes, respectively. Stress ratio is

characterised by the symbol size, ranging from 0.064 to 0.868 in (a) and from 0.193 to 0.829 in (b). See the caption of Table 2 for its definition.
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calculated by alternative algorithms, e.g. by Celerier (personal

communication, 2005) (Table 2).
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Fig. 4. The distribution of the proportion of data at segment C that fit the node

conditions in 108 evenly spaced azimuths. The grey line in the left side, with an

azimuth of 808, represents the solution of geometric mean stress vector when

using the constraint. See the text for more explanation.
5.2. Example with a 3D reduced hyperplane

This example is taken from segment C of the same

Chelungpu fault. It consists of 24 fault/slip data, mainly

distributed in two fault sets (Fig. 1b). In Table 3, there exist two

small eigenvalues, the smallest of which fails to accord with all

shear senses, in either polarity. Therefore, we make a 2D

subspace containing the eigenvectors relating to them, where v5
and v4 are directed eastwards and northwards, respectively.

The azimuth is defined in the same way as in the previous

subsection. The range of the azimuth is also evenly spaced

every 108.

Figs. 3b and 4 and Table 4 show results through

applying the grid-search method to this example. On the

stereogram, principal directions converted from the accepted

vectors are distributed along lines, in accord with the single

remaining degree of freedom. It is interesting to note that

the maximum and minimum principal stress axes seem to
fall within the field of possible axes for segment D,

described in the previous subsection. However, there is no

overlap for the intermediate principal axis. This suggests

similarity rather than homogeneity of deformation field in

the area. The common, fully shared, feature is the closeness



Table 4

For the example from segment C of the Chelungpu fault, principal stress directions and stress ratios for the eigenvectors relating to the two smallest eigenvalues and

for the geometric mean stress vector. See the caption of Table 2 for more explanation

No. Vectors Fit percentage (%) Principal directions (8) Stress ratio

s1 s2 s3

Bearing Plunge Bearing Plunge Bearing Plunge

4 v4 100 300.08 1.60 209.96 4.62 49.12 85.11 0.33

5 v5 50 341.46 22.29 230.52 41.09 92.06 40.64 0.03

Kv5 50 92.06 40.64 230.52 41.09 341.46 22.29 0.97

6 v 100 115.91 1.28 205.97 2.67 0.28 87.04 0.38
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of the minimum principal stress axis to the vertical (Tables

1 and 3).

6. Discussions and conclusions

As discussed above, the application of the moment method

(Fry, 1999; Shan et al., 2003) to fault/slip data that offer poor

constraint results in a reduced hyperplane in the sigma space

and the eigenvector relating to the smallest eigenvalue need not

give the best solution of stress vector. The linear combination

of the eigenvectors relating to the small eigenvalues, to

constrain a best stress solution, requires auxiliary constraints.

The first choice is the empirical constraint, which match

between observed and estimated slip senses. As shown in two

examples from the Chelungpu fault, Taiwan, grid search in

sigma space can still result in a range of accepted stress vectors.

There may not be any reason to constrain this range further, to a

unique solution. To do so requires either an arbitrary choice of

a ‘best’ vector (e.g. geometric mean) or additional constraints

extraneous to the data, such as a predetermined principal

direction.

The lack of full dimensionality of the data hyperplane,

highlighted in this paper, would present a severe problem for

separating polyphase fault/slip data into single-phase subsets.

Two single-phase data subsets would remain as a single

unresolved set if there is overlap between the subspaces

characterised by the eigenvectors relating to the small

eigenvalues for each phase. It is important to realize that this

problem is inherent in such data, regardless of the method used

for stress inversion; it is not a weakness of the method. What

the above discussion has done is to highlight this general

problem in a manner that is amenable to geometrical

appreciation, as was intended by Fry (1999). By any method,

a good stress determination requires collection, not so much of

a large number of data, but of data that, when considered as

stress space vectors, spread as fully as possible through the

dimensionality of sigma space (Fry, 1999).

Comparison of the use of subspaces of sigma space in this

study and of ‘q-space’ from Fry (1999) shows that they are, in

fact, the same. Both are defined by orthogonal axes, each of

which represents a fractional contribution of the corresponding

stress end member given by an eigenvector of the data.

Whereas q-space was conceptualised (Fry, 1999) as being

specified independently for each subset of data, the sigma

space equivalent in this paper demonstrates that subspaces can
be considered together, as having meaningful spatial relation-

ships within the full sigma space of which each is a part.

Acknowledgements

This work is funded by the Hundred Talent Program of

Chinese Academy of Sciences (KZCX0543081001), and by the

startup project of Computational Geosciences Research Center,

Central South University. We are indebted to B. Celerier who

pointed out the shortcoming of the moment method during

reviewing another paper and provided his result of estimated

stress using his software, and Tom Blenkinsop who provided

the Chi-Chi data in a ready to use format. This paper was

revised by M.D. Tranos and one anonymous referee who made

valuable comments and suggestions of it.

References

Angelier, J., 1984. Tectonic analysis of fault slip data sets. Journal Geophysical

Research B89, 5835–5848.

Angelier, J., Lee, J.C., Hu, J.C., Chu, H.T., 2003. Three-dimensional

deformation along the rupture trace of the September 21st, 1999, Taiwan

earthquake: a case study in the Kuangfu school. Journal of Structural

Geology 25, 351–370.

Blenkinsop, T.G., 2006. Kinematic and dynamic fault slip analyses:

implications from the surface rupture of the 1999 Chi-Chi, Taiwan,

earthquake. Journal of Structural Geology 28, 1040–1050.

Celerier, B., 1999. FSA.18: Fault Slip Analysis Software, http://www.isteem.

univ-montp2.fr/PERSO/celerier/software/fsa18.html.

Fry, N., 1999. Striated faults: visual appreciation of their constraint on possible

palaeostress tensors. Journal of Structural Geology 21, 7–22.

Kao, H., Angelier, J., 2001. The Chichi earthquake sequence, Taiwan: results

from source parameter and stress tensor inversions. Earth and Planetary

Sciences 333, 65–80.

Lee, J.C., Chu, H.T., Angelier, J., Chan, Y.C., Hu, J.C., Lu, C.Y., Rau, R.J.,

2002. Geometry and structure of northern surface ruptures of the 1999

MwZ7.6 Chi-Chi, Taiwan earthquake: influence from inherited fold belt

structures. Journal of Structural Geology 24, 173–192.

Lee, Y.H., Hsieh, M.-L., Lu, S.-D., Shih, T.-S., Wu, W.-Y., Sugiyama, Y.,

Azuma, T., Kariyae, Y., 2003. Slip vectors of the surface rupture of the

1999 Chi-Chi earthquake, western Taiwan. Journal of Structural Geology

25, 1917–1931.

Shan, Y., Suen, H., Lin, G., 2003. Separation of polyphase fault/slip data: an

objective-function algorithm based on hard division. Journal of Structural

Geology 25, 829–840.

Shan, Y., Lin, G., Li, Z., 2004. A stress inversion procedure for automatic

recognition of polyphase fault/slip data sets. Journal of Structural Geology

26, 919–925.

Xu, P., 2004. Determination of regional stress tensors from fault-slip data.

Geophysical Journal International 157, 1316–1330.

http://www.isteem.univ-montp2.fr/PERSO/celerier/software/fsa18.html
http://www.isteem.univ-montp2.fr/PERSO/celerier/software/fsa18.html

	The moment method used to infer stress from fault/slip data in sigma space: invalidity and modification
	Introduction
	An example showing the failure of the simple moment method
	Reason for the failure
	Modification of the moment method
	Test
	Example with a 2D reduced hyperplane
	Example with a 3D reduced hyperplane

	Discussions and conclusions
	Acknowledgements
	References


